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Novel tetracyclic compounds containing cyclopentenones
have been constructed by the cobalt octacarbonyl-
catalyzed double [2 � 2 � 1] cycloaddition reaction of
triynes under CO pressure.

The [2 � 2 � 1] cycloaddition catalyzed by transition metal
complexes provides a powerful tool for the assembly of five-
membered rings related to polycyclic natural products.1 In par-
ticular, the [2 � 2 � 1] cycloaddition of alkyne, alkene, and
carbon monoxide (known as the Pauson–Khand cyclo-
addition) 2 is now regarded as the method of choice for the
preparation of cyclopentenones. However, the [2 � 2 � 1]
cycloaddition of two alkynes and carbon monoxide has rarely
been used in the construction of five-membered rings.3

Although generation and stabilization of cyclopentadienones
through the employment of transition metals is quite attrac-
tive,4 the application of this method to organic synthesis has
been hindered by the necessity for the presence of specific sub-
stituents and a demetalation step 5 until our very recent publi-
cation.6 Recently, we realized that through judicious design of
the triyne, the double [2 � 2 � 1] cycloaddition can be carried
out selectively in place of the formation of arene A [eqn. (1)].

Herein we report a facile construction of novel tetracyclic com-
pounds B containing cyclopentenones by the cobalt octa-
carbonyl-catalyzed double [2 � 2 � 1] cycloaddition reaction
of triynes under CO pressure.

Treatment of 1 with Co2(CO)8 (5 mol%) in CH2Cl2 at 130 �C
for 18 h afforded 1A in 83% yield (Table 1).7 The tricyclic prod-

† Data for characterization of new compounds are available as sup-
plementary data. For direct electronic access see http://www.rsc.org/
suppdata/p1/a9/a909605a/.

uct 1A is an intramolecular [2 � 2 � 2] cycloaddition product
as expected from previous studies.8 However, reaction of 2
under the same reaction conditions gave a 4 :1 mixture of 2A
and 2B‡ in 90% yield. Compound 2B is a new tetracyclic
compound derived from a double [2 � 2 � 1] cycloaddition.
Tetraquinanes having the same skeleton as in B had been
synthesized previously.9 Encouraged by the formation of 2B,
we have screened a variety of triynes (Table 1). Subjecting the
substrate 3 to the same conditions provided a 70 :26 mixture
of 3B and 3C in 96% yield. The tetracyclic compound 3C has
apparently been derived from intramolecular [2 � 2 � 1]–
[2 � 2] cycloadditions. The transition metal-catalyzed [2 � 2]
cycloadditions of alkenes with acetylenes are known,10 albeit
not very common. Reaction of 4 gave a 58 :34 mixture of 4A
and 4B in 92% yield. Thus, changing an oxygen bridge to a
carbon one appears to increase the amount of B. Treatment
of 5 gave a 1 :2 mixture of 5A and 5B in 91% yield. When
two oxygen bridges were changed to two carbon bridges, the
ratio of A :B was completely reversed. Finally, 6 and 7 gave
6B and 7B in 72 and 74% yield, respectively, without trace of
6A and 7A.

The above results suggest that the oxygen atom of the
ether linkage may play a key role in the transition state for
the [2 � 2 � 2] cycloaddition, the oxygen atom coordinating
to the cobalt, thus positioning the triple bonds to yield
[2 � 2 � 2] cycloaddition products. Therefore, for substrates
with (an) oxygen bridge(s), the [2 � 2 � 2] cycloaddition is
prevalent. A similar coordinating role of the oxygen atom of
an ether linkage has been reported 11 in other cycloaddition
reactions. In the case of substrates without the oxygen bridge,
the double [2 � 2 � 1] cycloaddition is more favored than the
[2 � 2 � 2] cycloaddition. Hence, a reaction pathway can be
chosen by judicious design of the substrate. Following the
generally accepted mechanism of metal-catalyzed acetylene
trimerization and the Pauson–Khand reaction, a plausible
mechanism is proposed in Scheme 1.2,12 The precise mechan-
ism in Scheme 1, however, must await further studies.

In conclusion we have demonstrated that through the judi-
cious design of the substrate either a double [2 � 2 � 1]
cycloaddition or a [2 � 2 � 2] cycloaddition reaction can be
carried out selectively providing for a viable route to yield
tetracyclic or tricyclic compounds. These reactions provide
rapid access to tetracyclic skeletons of 5-5-5-5 and/or tricyclic
skeletons of 5-6-5 ring systems. Important features of this
catalytic reaction are the experimental simplicity and a high
conversion rate. Further studies on the scope of the reactions
and their application to organic synthesis are underway.
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Table 1 Cycloaddition reaction catalyzed by Co2(CO)8
a

Entry Substrate Product Yield (%) b

1 83

2 72/18(90)

3 70/26(96)

4 58/34(92)

5 30/61(91)

6 72

7
74

a Reaction conditions: 130 �C, 18 h, 30 atm CO, 5 mol% Co2(CO)8, CH2Cl2. 
b Isolated yields.

Scheme 1



J. Chem. Soc., Perkin Trans. 1, 2000, 141–143 143

Notes and references
‡ Selected data for 2B. 1H NMR (C6D6, 300 MHz): δ 4.85 (d, J 15.0,
2 H), 4.43 (d, J 15.0, 2 H), 3.88 (d, J 8.3, 2 H), 3.28 (d, J 8.4, 2 H), 0.04
(s, 18 H) ppm; 13C NMR (C6D6, 75 MHz): δ 206.2, 185.4, 131.9, 71.4,
67.9, 66.6, �1.79 ppm; HRMS calcd for (M)� m/z 363.1448, found m/z
363.1441.
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